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Abstract

Near surface seafloor properties are needed for recreational, commercial, and military applications. Construction
projects on the ocean seafloors often require extensive knowledge about strength, deformability, hydraulic, thermal, acoustic,
and seismic characteristics for locating stable environments and ensuring proper functioning of structures, pipelines, and
other installations on the surface of and buried into the marine sediments. The military is also interested in a variety of
seafloor properties as they impact sound propagation, mine impact burial, trafficability, bearing capacity, time-dependent
settlement, and stability of objects on the seafloor. Point measurements of sediment properties are done using core samplers
and sediment grab devices (with subsequent lab analysis) and in-situ probes. These techniques are expensive in terms of ship
time and provide limited area coverage. Sub-bottom acoustic and electromagnetic sensors can provide profiles of near
surface sediment information with improved coverage rates. Fusion techniques are being developed to provide areal extent
of sediment information from multiple sensors. This paper examines the recent history of techniques used to measure
sediment propertiesin the upper portions of the seafloor and in shallow (<100m) water.

I. BACKGROUND

The IEEE Ocean Engineering Society (OES) has seventeen technical committees covering everything from
unmanned submersible vehicles to space remote sensing. The mission of the Oceanographic I nstrumentation Committeeisto
provide a technical forum to make the results of research and development in oceanographic instrumentation known to the
public.

The Ol committee focuses on sensors and systems that measure the following water and sediment properties:
conductivity; temperature; depth; pressure; salinity; sound speed; water samplers, wake measurements; chemical properties;
seafloor properties; sediment properties, non-acoustic communication; and navigation and positioning. Interests include new
sensor developments; sensor performance comparisons, and applications characterizing the ocean environment. In concert
with the 400™ anniversary of Quebec and the 40™ anniversary of the IEEE Oceanic Engineering Society, this paper examines
recent history of sensor technol ogies and measurement techniques used to quantify seafloor and sediment properties.

Il. APPLICATIONS

Civilian and military communities need to determine seafloor and sub-bottom structure to predict geotechnical and
geoacoustic properties in the upper few meters of the seafloor. Thisinformation is used for seafloor-engineering applications,
trafficability estimates, and asinput to acoustic propagation models'.

On the civil side, seafloor engineering is required for the development of offshore resources and supporting coastal
infrastructure. Information on surficial marine sediments is used for: cable and pipelines route surveys; anchors and
moorings, pilings and footings; placing items on the seafloor; dredging; and break water, jetties, and harbors construction.
Design and placement of pilings, platform footings, anchorages and moorings depends on sediment properties as does the
mobility of equipment designed to traverse the seafloor. Knowledge of the seafloor is also required for salvage operations
and to perform marine archeol ogy studies.

On the Military side trafficability, impact and subsequent burial, and acoustic propagation in the upper sediments are
major considerations in addition to seafloor construction. Seafloor and sediment characteristics affect reflection and
absorption of acoustic energy from sonars used to look for targets in the water column, at the sediment water interface, and
below the seafloor?. Similarly, sediment characteristics affect acoustic positioning sonars used to track vehicles. Sediment
properties also determine impact burial for objects and mines, and subsequent burial due to wave and current action.

Sediment properties can be segmented into categories that describe individual grains, compositional properties and
bulk properties. A combination of direct and remote sensing technologies can be used to measure desired properties. Table 1
cross references sediment properties with sensing techniques. The authors understand that there are more properties and
more techniques that can be listed; however, the table is presented as a summary in the spirit of the history of seafloor
sensing techniques. In the table, if the intersection block of a property and technique is grey the property is directly
measured. If the intersection is dotted, the property is empiricaly determined. Historically speaking, the newer sensing
techniques appear to the right.

U.S. Government work not protected by U.S. copyright



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
SEP 2008 2. REPORT TYPE 00-00-2008 to 00-00-2008
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Sensing Shallow Seafloor and Sediment Properties, Recent History £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Research Laboratory, ,Stennis Space Center,M S,39529 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM002176. Presented at the M TS/IEEE Oceans 2008 Conference and Exhibition held in Quebec
City, Canada on 15-18 September 2008. U.S. Government or Federal Rights License.

14. ABSTRACT
seereport
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 11
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



Sampling Measurement Techniques
Direct Measurement (Contact) Remote Measurement (Non-contact)
Sediment Properties Dynamic Probes Static Probes Acoustic EM
Cores | Grabs Cone -
xgp  |STINGES|  vane | penetro- | Acoustic | Thermar | PMT | P20~ f ooting Imuttibeam| sss | chip |Resistivity| csem | AEm
P DMT meter
meter
Compositional Properties
mineral composition
organic matter content
grain shape S S
Bulk Properties
GeoTech grain size distribution
mean grain size
liquid and plastic limits Cl ©
density | | ] | ]
relative (min, max) S |
specific gravity |
moisture content
porosity [ I | | ] I I
shear strength S co c] C | ] [ | | ] | |
deformability S | | | | |
permeability
stress state - in-situ
pore pressure - in-situ
Acoustic_surface texture (>.3m)
impedance
comp. & shear velocities
acoustic attenuation
acoustic roughness
EM electrical conductivity | |
Thermal thermal conductivity | | |
XBP - eXpendable Bottom Profiler
STING - Sea Terminal Impact Naval Gage
KEY ESP - Electronic Sediment strength Probe
Direct Measurement S Granular materials, i.e. silts, sands, gravels SSS - Side Scan Sonar
Derived/Empirical Propert: C Cohesive materials, i.e. clays, muds CSEM - Controlled Source EM
AEM - Airborne Electromagnetics
DMT - Dilatometer
PMT - Pressuremeter

Table 1, Sediment Properties and Measurement Techniques

The civil, recreational or military application will determine what properties should to be measured. The more
commonly measured bulk properties are shear strength, impedance, shear velocity and acoustic attenuation. The dominance
of these measurements makes sense based on general geotechnical and geoacoustic requirements. Geotechnical parameters
such as shear strength determine how a foundation or anchor will perform. Impedance is used as an input to acoustic
propagation models.

I1l. SAMPLING TECHNIQUES

Classification

Sampling methods in the marine environment can generally be grouped according to several principles. They can be
intended for shallow or deep sampling into the sediment bed — from small and shallow grabs to cores as deep as 20m; by the
degree of material structure disturbance during the sampling procedure — from totally remolded grab samples to lined corers
with relatively intact internal structure; by which material they are mostly applicable to (e.g. granular, cohesive), and by the
maximum water depths they can be used in. Samplers also differ by the size and geometry of the retrievable specimen —
from small hand-driven cylindrical cores able to sample up to 40-50 cm in the softest soils and small grabs probing the top
10-20cm of sediment to large box corers, usually square in cross-section, and long (up to 20m) cylindrical piston corers.
Subsequently, these different samplers have vastly varying requirements for the applicable platform to be deployed from,
some requiring high-capacity lift winches and high vertical lift booms to manipulate them on deck and deploy.

Most geotechnical investigations require undisturbed specimens, mandating therefore the use of corers of one type
or another. Sampling depth requirements can vary widely and are dependent on the specific problem at hand. Majority of
investigations will utilize gravity corers, vibratory corers, and piston corers to attain the sufficient sampling depth and
recover specimens for laboratory testing of relatively intact structure. Table 2 lists the type of equipment to use for the
desired depth of sample. The following isabrief list of several common samplers and corers:

1. Corers. Hand corers, Alpine gravity corer, Benthos gravity corer, Boomerang, Box corers, Piston corers, Phleger,

Kajak Brinkhurst, and Vibratory

2. Grab samplers. Birge-Ekman, Petersen, Ponar, shipek, Smyth-Mclntyre, and van Veen

Most grab samplers, whether large or small, are based on similar operating concepts and consist of one or more
rotating containers, triggering a closure by a certain mechanism when in contact with the sediment floor. Fig. 1 shows
examples of these commonly used samplers. As is obvious from their operating principles, sediment structure is generally
disrupted upon sampling yielding an averaged representation of the surficial sampling depth of 10-30 cm. In some instances,
larger samplers, i.e. box corers, can be further subsampled with small push-in tubes, yielding relatively undisturbed
specimens.

Corers (Fig. 2), on the other hand yield relatively undisturbed specimens. They differ mainly in size (diameter and
sampling depth), bottom sediment catcher mechanism, top core flow valve, and the presence and design of a piston. The
valves play a sdignificant role in preserving the integrity of the sediment within the sampling tube



during retrieval. Generaly, common gravity corers can
retrieve up to 5m (in softer sediments) of soil, whereas
the longer piston corers can yield as much as 20m of
sediment.

Vibratory corers are used in primarily
cohesionless granular materials where gravity corers
can penetrate to only limited distance and/or unable to
retain the sediment to a sufficient amount due to low
cohesion with the sampling tube that can be generated.
Vibro-corers are similar to the gravity corers but have a
motorized unit added to the top of the assembly,
generating an oscillating motion that assists in tube's
burial in the sediment. Severa types are mostly
distinguished by the actuator type: pneumatic,
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Fig. 1 Shipek, Birge-Ekman, van Veen samplers

Table 2 Sampling depth and equipment®

hydraulic, or electro-pneumatic. Most are limited to Sampling Sampling equipments

about 200m water depths due to difficulty of providing depth S pling eauip
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t010-12m, unless very soft soils are encountered. Some P Heavy, large-volume grabs (e.g. van Veen,
more innovative techniques can be represented by the —ooem Smyth-Mclntyre, Petersen)
Boomerang corer. This is a small free falling sampler Single small gravity cores (e.g. Kajak-
(total weight: 85 kg, sampling tube: 120cm long and 0-1m Ec:'rl(hr‘;[jsltt’imi%?é“p'”e)' box-
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cutter, acore barrel and weights. >5m Deep Wmé’géanpl e?)g

The retrievable part consists of the core barrel liner tube and two spherical floater spheres that are released after the
penetration into the sediment and float back to the surface pulling the liner tube with the sample with them. Reported
sampling water depth can be up to 9000m.

[%K] uf
F 4

BENTHOS VALVE

J SYSTEM
<’,4,_

PHLEGER

VALVE

BENTHOS GRAVITY SYSTEM
CORER

l

PHLEGER CORER

0

CLOSED

VALVE SYSTEM

|~

ALPINE  GRAVITY
CORER

Fig. 2 Common corers

Trends

For sampling depth greater than those that can be attained by the piston corers or in
case of hard granular materials or even very stiff clays with possible bolder inclusions where
surface corers have difficulty penetrating, down-hole sampling can be employed in conjunction
with rotary drilling. Here, the drill-hole is advanced to a desired depth, then the drill head is
lifted and a sampler is deployed through the drillstring. Then the drilling can continue to the
next depth of sampling interest. Drillstring samplers include wireline percussion, latch-in push,
and hydraulic piston samplers. While these samplers can be lowered into the unstabilized
drillstrings, stabilization can allow for higher quality sampling as well deployment of a variety
of in-situ probes.

Analysis of specimens

Ranges of tests and material properties that can be determined from different sampling
methods are wide and with significant differences among them. Grab samples, representing
mostly disturbed material from the very surface of the sediment are used primarily in
characterization of material grain-size characteristics, mineral composition, and organic matter
content. Other soil structure-independent parameters, such as grain-shape descriptors for coarse
meaterials and plasticity characteristics (liquid and plastic limits) for fine clayey soil can aso be
determined from grabs, as well as various environmental descriptors.

Most geotechnical laboratory tests that are conducted on retrieved specimens require
that the undisturbed structure of the soil is preserved as much as possible. These tests are
geared to identifying complex material response and characteristics defining strength,
deformability, hydraulic, thermal behaviors, acoustic response, material stress history and
anisotropy.

Most innovations in sampling relate to minimization of specimen disturbance during penetration and retrieval
(especially in very soft sediments). In general, the current techniques are quite mature and are generally considered adequate,
thus, not resulting in many significant new developments. Most grab samplers are similar to one another in construction and
operating principles. Improvements or changes, if done, have to do mostly with reliability of trigger mechanisms and



prevention of material wash-off during retrieval. In surface coring technology, similar attempts to minimize sample
disturbance during penetration and retrieval are done, mostly focusing on cutting shoe, bottom retainer, and valve/piston
modifications. One example of relatively recent developments could be the Norwegian Deep Water Sampler (DWS). Thisis
a heavy piston coring system that attempts to minimize specimen disturbance by al the modifications listed above as well as
instrumenting the piston to monitor the amount of suction developed during lift. The corer isincorporated into aframethat is
lowered to the seafloor with the sampling unit then pushed into the sediment. Sampling depths of up to 20m are reported.
These trends may be indicative of future possible developments in the marine sampling techniques, including deeper
sampling and increased instrumentation of corers, alowing for greater information collection on influences and changes in
the specimen conditions during sampling and retrieving. Pressurized sampling may be another avenue of future work,
alowing for sample retrieval while maintaining the ambient hydrostatic pressure.

IV. MEASUREMENT TECHNIQUES AND SENSOR TECHNOLOGY

In general, determination of sediment properties of marine sediments can be achieved in laboratory environment on-
board a vessel, in an on-shore lab, or in-situ. Field (or in-situ) testing techniques can be grouped into two major classes,
those utilizing direct or contact methodology and those using indirect or remote approaches. Contact methods include direct
measurements on the sediment surface (or in the down-hole mode) by static instruments, lowered from a vessel or dynamic
probes, deployed in free-fall through the water column.

Direct Measurement Techniques

In-situ testing: static probes

Contact measurements in-situ are typically performed in one of the two configurations: using a remote platform or
through a drillstring (Fig. 3). Different organizations developed a number of tools for this purpose: Swordfish, Stingray, and
Dolphin (originally McClelland Engineers), Wipsampler , Seaclam, Seasprite, and Seacalf (Fugro), among others. Severa
probes, i.e. cone penetrometer, require the use of a stabilized drillstring, where all vertical motions of the vessel are
suppressed and the vessel is providing a controlled thrust for the probe. Remote tethered platforms are generally more
economical but do not provide drilling capability and are limited to about 200kN of thrust. Examples of such platforms are
Stingray (formerly, McClelland) and Seacalf (Fugro). Examples of several down-hole samplers and probes are given in Fig.
4 for the Fugro’s Seaclam (Wison) drillstring system. A number of smaler platforms are also used for testing surficia
sediments with limited probe penetration depths that do not require alarge vessel for deployment.

Most commonly used probe types for in-situ testing of soils are the following:
cone penetrometers;
vane shear devices,
pressuremeter/dilatometer/hydraulic fracture systems;
dedicated compressional and shear wave probes;

o heat flow probes.

Cone penetrometer s are perhaps the most widely used tool for in-situ investigations and have evolved over several
decades of use in a number of important ways. CPT was first introduced in 1934 in the Netherlands (Dutch Cone
Penetrometer). Electrical sensors were first developed in 1948 but were not used widely until the 1960s. By the 1980s, the
CPT has become widely used by the industry with more subsequent research into various sensor packages. Currently, the
cone penetrometer series include the standard CPT, CPTu (piezocone penetrometer), SCPTu (seismic piezocone
penetrometer), and electric conductivity cone. More recently, gamma-ray sensor has also been added to some probes,
yielding a continuous profile of the sediment density, correlated from the gamma-ray attenuation. All of these cone probes
can be advanced using the same equipment. Heaviest remote platform-operated CPT
probes can be deployed in up to 6000m water depth (Figro’s Seaclaf) with maximum
reaction force of 200kN and maximum penetration of 50m. Intermediate-size systems (e.g.
A.P.v.d.Berg’'s ROSON) can be deployed in up to 500m depths and provide reaction force
of 100kN and penetrate up to 15m into the sediment.
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Fig. 3 In-situ testing systems



developed friction on the side of the probe, immediately behind
the tip. These quantities describe the strength and deformability
characteristics of the soil, including friction angle and undrained
shear strength, depending on the material.

Piezocone, CPTu (e.g. Fg. 5), is equipped with a Push  Piston Amblent CPT/CPTU  Heal in sk CTU Dilato-
pressure transducer, in addition to tip and sleeve force samping samping pressure seismic CPTU flow b o
transducers. This record yields pore pressure signatures as a e e cong GFT o et e
result of cone penetration in soils and is used in many
correlations with material properties, from assisting in sediment
classification to permeability and consolidation, and some stress-history characteristics. Main concern with CPTu
deployments is typically assuring full saturation of the porous stone near the pore pressure transducer. This is not always
simple to achieve and incomplete saturation can yield highly unreliable results on pore pressure built-up and dissipation. Itis
possible that more technological and procedures development are needed in this case to simplify operations and avoid errors
in measurements.

Additionally, SCPTu is also equipped with either geophones or accelerometers and is able to measure the shear
wave velocity generated from a source at the sea bottom and is also able to operate as a regular cone penetrometer. In some
cases it may also be able to measure P-waves. Measurements of average shear (or
compressional) velocity allows for computation of small strain shear (or bulk) modulus,
in addition to the cone, sleeve, and pore pressure transducer-derived parameters.

Vane shear test (e.g. Fig. 6) is performed primarily to obtain the undrained
_— shear strength of soft cohesive deposits. As the CPT it can also be deployed in the
fore Loadeall drillstring or on a remote platform and provides measurements of peak resistance as well

b Fiter as residual strength, typicaly after sufficient remolding of the soil has taken place as a

Fig. 5 Piezocone result of the vane rotation within the soil.

Pressuremeter is a device for measuring lateral deformation and strength properties of soil. It is built for pre-
drilled shafts as well as in a self-boring form and is deployed in a drillstring or remote platform configurations. (Hydraulic
fracture testing probe is a similar tool intended for shafts drilled in rock formations.) The probe consists of one or three
inflatable cylindrical diaphragms, instrumented to monitor and control hydraulic pressure and volume of hydraulic liquid in
each one. It is lowered into the drillshaft (or advanced into the |
soil, if self-boring) and then inflated, recording the pressure in the [ﬂ.on 0
measuring section vs. lateral expansion of the shaft (and the soil). 1]

The tool is widely used in terrestrial applications and has seen an
increase in marine use over the last 10-20 years. Primarily, it is

Standard cone penetrometers could be of electric or
mechanical type, with the difference being only the mode of
operation and the sensor package. Same two quantities are
measured for both systems: cone tip resistance and Seeve
resistance. These quantities relate to the plastic flow that
develops around the tip of the penetrating probe as well as

Fig. 4 Sampling and testing probes for Seaclam (Fugro)
system (“Bat” — electrical conductivity probe)
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used for determinations of in-situ horizontal stresses in the soil. | L ' S o
Additionally, it can be used to determine undrained shear strength s '

of clays and friction angle of sands as well as shear modulus from Lo

unload-reload portions of the pressure-volume curves, and general %ﬁ) —

stress-strain behavior. ‘P-Y' (or load-displacement) curves for
lateral pile design can also be generated using a pressuremeter.

Dilatometer is flat spade-like plate (95mm wide, 14mm thick) with an inflatable circular steel diaphragm on one
side (60 mm in diameter). Originally designed by Marchetti* it has been introduced into the field of offshore testing in the
last decade. It is used for mostly same purpose as the pressuremeter and allows for similar derivations of data regarding soil
strength, stiffness, and stress-history. Most recent developments introduced a seismic sensor into the probe to allow for the
shear wave velocity measurements as well. One may expect similar evolution for this device in the future, if indeed the
industry increases its use, including incorporation of additional sensors as occurred with the cone penetrometer technology,
yielding additional information about the soil.

Dedicated acoustic systems are designed to provide compressional and shear wave characteristics of the sediment.
NRL ISSAMS’ (In-situ Sediment geoAcoustic measurement System) is an example of such a system, .
designed for measurements in surficia (0-50cm) sediments and water depths of up to 300m.
Additionally, data on water temperature, salinity, depth, and a video of operations are also taken.
ISSAMS has been used at 83 sites worldwide and is mostly a research tool. In practical geotechnical

Fig. 6 Vane shapes and Halibut (Fugro) remote system

Fig. 7 Dilatofﬁéter



offshore work, acoustic properties of sediments are more often measured using either remote acoustic sensing or borehole
tools incorporated together with other probes, e.g. cone penetrometer or dilatometer.

Heat flow probes are designed to study thermal properties of the sediment and consist of a sensor string (typically
1cm diameter) with a series of thermistors and heater elements, attached to the side of a strength element (Fig. 8), generally
3-5m long. The strength element is a steel tube with an added instrumentation package near the top for sensor data
acquisition and control storage. Measurements include monitoring heat gradients as a result of the probe insertion as well as
heat dissipation with time produced by an impulse of the heater elements. Main parameters of interest include geothermal
gradients and thermal conductivities of the surficial 3- to 5-m portion of the seafloor sediment. These data are used for both
engineering design of structures under thermal load, such as wellbores and pipelines, as well as sedimentary basin
hydrocarbon maturation studies for exploration purposes.

Trends in static in-situ probe development included several directions in the recent decade.
One trend involves improvements made to the existing probes mostly due to better electronics packages, |osalogger
data acquisition and processing. Another involves incorporation of multiple sensor packages into the
same probe technology, asis evident from the history of CPT evolution. Modern probes include different |} thermistore.
types of measurements in a single unit, e.g. tip resistance and sleeve friction cones, pore pressure cones,
seismic (p- and swaves), pressuremeter cones (full-displacement pressuremeter), vibrating cone for
liquefaction evaluation, lateral stress cone (for pile analysis and K, evaluation), logging cone (for nuclear
density estimates), resistivity cones (for porosity evaluation), and cones with sampling capabilities (for
environmental work). Generally, CPT technology remains one of the most widely used and developed,
with decades of experimental and technological improvements as well as related analytical tools and
empirical correlations for a wide variety of geotechnical problems. One may observe a beginning of a
similar trend with the dilatometer probes, with recent incorporation of the shear wave profiler into the Fig. 8 Heat flow
package. Their use, however, appears to be quite limited at this time in marine applications. probe

Additionally, new probe configurations have been introduced over the last decade, i.e. full-flow penetrometers for
soft or very soft soils. These include ball and T-bar penetrometers. These allow for development of more accurate processing
algorithms for extraction of sediment strength parameters, such as undrained shear strength due to the different geometry of
the plastic flow developing around the probe tip during insertion and retraction. This geometry allows for more accurate
analytical and numerical techniques to be applied, with fewer assumptions, to determine strength characteristics of the
sediment.

In-situ probes: dynamic probes

Dynamic marine probes are intended for similar purposes as the standard static devices described above, but are
typically less sophisticated, perform fewer measurements and are able to probe only to the very limited sediment depth of up
to 3m in the softest soils. These can be further categorized into expendable and retrievable probes. Development of all of
these, and especially of the expendable probes, are of interest for the military applications, as large dedicated geotechnical
platforms are not always appropriate for the military use. All of the probes dicussed below are intended for mostly soft
cohesive sediment profiling, where impact penetration and burial can be achieved as a result of a free-fall through the water.
In granular sediments, impact burials are rather small and the data produced from such drops are typically unusable.

Main probe typesin use today are:

o XBP - eXpendable Bottom Profiler®;

o STING (SeaTerminal Impact Naval Gage)’ and ESP (Electronic Sediment Profiler)®;

o Probos’;

o Combined systems.

XBP was first introduced in the 90s and was designed for rapid surveying of the topmost sediment layer in soft sea
bottom sediments. It is a small expendable probe (modified XBT — eXpendable BathyTermograph) that has seen some
limited use, mostly in aresearch framework, by several organizations, including NRL. It's asimple system with asingle-axis
accelerometer instrumented body connected via an electrical line to the on-board data acquisition and
storage system. It generally yields only classification information about the sediment (at most top
30cm), grouping the material into one of four categories according to the maximum deceleration
encountered during impact. Some recent numerical modeling advances have allowed for a more direct
material parameter extraction (undrained shear strength) from the deceleration time history, with some T
assumptions about strain-rate dependency. Some additional work is being done at NRL in the same &=
area, with possible better algorithms to follow. This tool, however, suffers from small size and mass, F'9- 9 XBP probe
allowing for only very shallow penetration of the surface. Additionally, it is only produced by a single manufacturer and its
cost is apparently another hindrance to its wider use and acceptance. Additional developments in the software algorithms,
electronics and data acquisition could perhaps increase the applicability and use of this tool for rapid surficial sediment
investigations.




STING probe, similarly to the XBP, measures the deceleration
profile as a result of a free-fall through the water and sediment penetration. #.L
Unlike XBP, this is a recoverable tool with the self-contained data
acquisition block located in the main fin-stabilized body (weighing 10kg). Fig. 10 STING (withImrod & 25mm foot)
Steel rods (1-3m long) are attached to the probe together with one of four disks at the end of the rods. These discs range from
25to 70 mmin diameter. The probe is allowed to free fall and then lifted from the sediment (typically several timesin same
series), after which, the probe if recovered, connected to a computer, and the drop data downloaded and analyzed. In addition
to the single-axis accelerometer, a water pressure transducer is also housed in the probe's body. Recorded water pressure is
used for velocity and water depth calculations. Current processing algorithms are rather crude yielding different values of the
‘bearing strength’ for different end disks used. NRL is currently working to improve these algorithms in accuracy as well as
yield parameters of greater engineering meaning i.e. undrained shear strength, as opposed to the rather ambiguous ’bearing
strength’ values. Advantages over XBP, however, include larger weight and longer (up to 3m) penetration depths.
Electronic Sediment Probe (ESP) is a very similar device, with a 1m long rod that has an almost identical configuration and
design. It has been used by the Australian Navy for sediment characterization.

Probosis yet another STING-like instrument (modeled after it) that is currently in research and development stages
that improves the design of the model-probe by incorporating a cone-tip load cell. This addition significantly improves the
ability to process and analyze the drop records, including utilization of the CPT experience and algorithms where cone force
is also measured. As an experimental device, it has seen only very limited use but it holds promise of greater accuracy in
deducting parameters such as undrained shear strength.

Combined systems may be represented by an FFCPT*® (Brooke-ocean). Thisis a heavy (52kg) dynamic probe that
includes several sensors: accelerometer (for correlations with undrained shear strength, Su), pore-pressure  teterpoint
transducer (near the tip, for Su correlations), electrical resistivity module (for correlations with porosity, svep
which may be reasonable in granular materials but are inaccurate for clays), and an optical backscatter sensor ™'
near the tip for surface detection in particularly soft muds (e.g. fluid muds). It is also equipped with a tail Tall Fin
pressure transducer for hydrostatic water pressure measurements and decent velocity calculations. The probe  gatey
can penetrate up to 3m, in soft sediments. The device is still under development and is used in combination . ..
with an automatic winch system for continuous deployment and retrieval while underway. Modige

Trendsin dynamic in-situ probe development are somewhat hard to identify as these devices see =
generaly very limited use, amost exclusively being the domain of research groups. The demand for these 2,
probes at the current stage of the technology development appears to be small, including military e
applications. It appears that additional sensor packages for retrievable devices are a trend, whereas — i

Sensor\
expendable probes have not seen much development at all in the last 10 years and are mostly limited to minor  porous ring
data acquisition and processing improvements. Nose Cone

Module

. Fig. 11
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In general there are two types of |aboratory testing: on-board a vessel and in an on-shore lab. Most
tests can only be performed in an on-shore laboratory with only a few limited investigations done in on-board conditions.
These often include specimen classification and simple tests such as miniature vane tests (yielding undrained shear strength)
and fall-cone tests (correlating with undrained shear strength and liquid limit). It is possible that more wide-spread use of
core-logging on-board vessels can be expected, yielding density (from gamma-ray attenuation) and p-wave velocity.

Most geotechnical investigations conducted today make extensive use of the undisturbed cores and are done in an
on-shore laboratory. Detailed review of these testing methods and the types of material parameters that can be inferred from
them are beyond the scope of this paper. Below isabrief list of main testing categories, performed routinely in geotechnical
laboratories:

e hydraulic conductivity —falling or constant-head tests;
e strength and stress-strain behavior:

o0 oedometer tests, yielding consolidation and creep parameters, including coefficients of consolidation,
secondary compression, compression/expansion index, pre-consolidation pressure, OCR, and others;

o direct and simple shear tests, yielding friction and dilation angles;

o triaxia tests, including, most commonly unconfined compression, unconsolidated undrained, isotropically
consolidated undrained/drained, K,-consolidated undrained/drained tests, tests in compression, extension,
or cyclic, yielding many strength and deformability parameters;

o truetriaxial tests, including cubic triaxial (rigid-, flexible-, or mixed-boundary configurations), yielding
detailed 3D stress-strain-strength descriptions;

o torsional cylinder tests, including solid and hollow cylinders, yielding stress-strain-strength as well as
stress-rotation analysis of soil behavior;

o and thermal conductivity tests for coupled thermo-mechanical problem parameterization.



Some of the trends in the last decade has been the much more commonly accepted use of the small-strain stiffness
testing as well as multi-axial testing, with hollow-cylinder and cubic triaxial testing systems now available commercialy.
Additionally, CT (computed tomography) is applied much more widely in research and some industrial settings for the
description of natural granular materials, including some marine sediments. It is possible that the use of these advanced
laboratory testing methods will continue to garner wider acceptance and become more wide-spread with advancements in
technology as well as reduced costs of these systems.

Remote Measurement Techniques

Magnetic and Electric Techniques

Electric and Electromagnetic (EM) sensor technology have been used for more than 80 years to explore the surface
and shallow sub-surface of the earth. EM sensing technology exploits the electrical or magnetic properties to expose
differences in the shallow subsurface materials and these differences are used to identify or focus on specific geologic
sediment types. Both electric and EM sensors technologies measure the basic electrical properties of the sediment, but with
different sensor types, to different depths, or in different frequency regions. For bottom sediments, this is mainly the
electrical conductivity. There are many types and configurations of electric, magnetic, and EM sensor technologies. This
section focuses on afew examples. A quick explanation of the sensor technology will help to associate the differencesin the
technology.

Electric sensors use electrodes to measure the electrical conductivity of a material. This often includes a set of
source electrodes to put current into the shallow bottom and receiver electrodes to measure the resulting voltage potentials.
In this configuration, geometry is very important because the current flows between the source electrodes and spreads out
through any conductive path. Measures of the resulting electric potentials are taken with the receiver electrodes and the
measure depends on the location relative to the source electrodes. Since the sea bottom is not electrically uniform, a simple
model is often used to estimate the bottom properties. In the simplest case this would be a uniform halfspace model.

EM sensor technology measures similar properties to the electric method using a different approach. The name EM
implies that the technology uses time varying EM fields to probe the sediment properties. In general, low frequency EM
technology has a source ‘transmitter’ that produces a time or frequency domain variation of a magnetic or electric field. The
time varying field interacts with the electrical properties of the water and sea bottom sediments to produce induced electric
currents. A receiver is used to detect and measure these induced currents. The sea bottom properties can then be estimated
from the measurements by fitting the data to a simple model of the bottom. Asin the electric sensor technology, geometry of
the source and receiver is very important to get a good estimate of bottom conductivity properties.

An electrode resistivity array uses two source electrodes plus one or more sets of receiver electrodes. Resistivity
techniques have been used in shallow exploration for more than 80 years however most recent applications are in the well
logging industry. In the mid 80's, Valent, Mozley, and Corwin used an inverted Schlumberger array configuration as a
towed array behind a ship to classify seafloor sediments'.

Another type of ship towed system that has been used for sediment classification uses Controlled Source EM
(CSEM) technology. One type developed by the Geological Survey of Canada more than 15 years ago consists of a towed
magnetic source with following magnetic receivers. Woods Hole Oceanographic Institution uses an enhanced version of this
system to support research on the continental shelf. A diagram of the basic deployment configuration is shown in figure 12.
The transmitter is a horizontal magnetic source and the receivers are three horizontal magnetic sensors towed behind the
transmitter at different offset distances. The system uses AC fields and produces data that can be related to seafloor electrical
properties to roughly 20 meters in the sub-bottom.

Another CSEM technology that has gained significant use for the oil industry in the past ten years uses a towed
electric source and an array of bottom mounted magnetic and electric receivers to investigate the electrical properties of the
sub-bottom™. In this type survey system, a ship tows an electric source (two electrodes separated by some cabled distance)
dlightly above the bottom. Magnetic and electric field receiver systems are positioned on the bottom to record the data as the
towed source is moved through the array of receivers. Anillustration of the deployment technique is shown in figure 13. In
this configuration the source to receiver offset varies significantly and supports a wide range of sub-bottom depth.

Another EM technique that is used in commercial applications and has been applied to marine surveys is the
Airborne EM system. AEM technology has been used in prospecting for more than 40 years. In the 1980's the technology
was applied to measure shallow marine bathymetry and bottom properties. Thisis aso a CSEM type technique with a fixed
transmitter and receiver pair configured as a vertical magnetic source and receiver pair (horizontal coils). The system is often
towed under a helicopter as shown in figure 14. An AEM system can be used to measure water depth as well as bottom
electrical properties for shallow water locations®.
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Figure 12 Towed controlled source EM system for Figure 13 CSEM survey technique used in marine
bottom characterization. (based on drawing from Rob exploration of the sub-bottom.
Evans?)

Early technology primarily centered on the use of electric field sensors. As technology and electronics have
improved, both electric and EM sensor technologies have been incorporated as separate tools with specific applications.
Trends in the electromagnetic measurement of seafloor sediment properties have been driven by a combination of technology
innovation and commercial motivation. New applications in the oil industry have supported advances in both the survey
equipment and survey technology to make large seabed surveys commercially viable. Future advances in the sensing
technology will most likely be developed to support underwater applications on small autonomous systems.

Transmitter Receiver
Coil Coil

Sea Water

Figure 14 AEM system concept for measuring water and bottom electrical properties.

Acoustic Techniques
While the reflection and scattering of light is usually the best method for environmental sensing in air (humans rely
primarily on our sense of sight), acoustic reflection and scattering provides a more effective means for remote sensing under
water. Attenuation and water-column scattering prevents light from propagating more than a few 10's of feet. On the other
hand, low frequency sound can travel 100's or even 1000's of miles in the ocean.(a reference here would be nice). Early
unidirectional sonar techniques were developed to determine water depth (bathymetry) directly below a ship. Later advances
enabled directional submarine detection and multidirectional bathymetry (multibeam echosounders). With large amounts of
quality acoustic data available, several methods have been developed to classify seafloor sediments acoustically. Three broad
categories for acoustic classification techniques are 1) Impedance methods, 2) Scattering Model methods, and 3) Acoustic
Texture methods.
Impedance methods: Acoustic impedance Z of a seafloor sediment is, by definition, Z = pc where p is the density
and c is the sound speed of the material. The reflection coefficient R at the seafloor is,
Z-Z,
Z+Z, >

where Z, is the acoustic impedance of the seawater. So the reflection coefficient increases with the sediment impedance, and
therefore, the impedance can be measured by the strength (loudness) of sonar echoes. Sediment properties that may be
inferred by the impedance measurements include density, porosity, and shear strength. This method may be used with
fathometers, subbottom profilers, and chirp sonars. Two product examples are RoxAnn (derives reflection coefficient from




ratio of first and second bottom echoes) and NRL's Acoustic Sediment Classification System® (ASCS), which can use both
fathometer and chirp sonar systems.

Scattering Model methods. Acoustic seafloor scattering models (for example see **™) predict the intensity of
scattered sound as a function of incident and scattering angles. Scattering back in the incidence direction is known as
backscatter. With multibeam echosounders measurements of backscattered sound intensity levels can be made at many
backscattering (or grazing) angles. By fitting the model to the multibeam data, optimal model parameters are found for
impedance, acoustic roughness (on a scale of 1-meter), and bulk sediment (volume) interaction. NRL has developed
SediMap®®Y’, a software package to characterize the seafloor sediment using multibeam sonar. Mean-grain-size estimates
based on SediMap impedance calculations correlate with ground truth with a correlation coefficient of about 0.6-0.7 (about
the same as the correlation between mean-grain-size and impedance measurements from core sampl es).

Acoustic Texture methods: Higher frequency sonars can produce sufficient resolution as to be able to determine
acoustic “graininess’, or time fluctuations in the echo intensities. This can be visually demonstrated with images from
sidescan sonar. Quester Tangent™ and, more recently, Qinetic have developed products to analyze statistical properties in
high-resol ution imagery to separate regions containing different sediments. NRL's Data Fusion from Acoustic Backscattering
from the Seafloor (DFABS) uses an analog to a magnetic system (Potts model) for rapid image segmentation of sidescan
images. These methods have proven successful in recognizing areas with different sediment types, however, they are less
relilable in classifying the sediment (in part due to the lack of penetration at high frequencies). Additional information is
needed for reliable characterization.

Recent R&D trends aim to combine two or more of the above methods to obtain the best characterization of the
seafloor (data fusion). DFABS is under development and will combine sidescan image segmentation with ASCS for
identifying sediment regions and their properties. Further trends involve making use of fleet sensors'®? (Through-The-
Sensor technologies) and synthetic aperture sonar (SAS) and increasing capabilities for near real-time processing at sea’.
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V. SUMMARY AND FUTURE DIRECTIONS

In the recent history of sediment sampling techniques, there has been a pronounced addition of remote techniques to
complement direct measurement of properties. 40 years ago engineers and scientists measured surficial sediment properties
in shallow areas with cores and grab samplers. Due to the limited coverage and expense of these point measurements,
techniques have evolved that provide areal coverage using remote acoustic and electromagnetic sensors. These new sensing
techniques measure few properties directly; however, additional properties are derived from empirical data. Calibration of
the empirical data is performed using core and grab sampling in selected areas. Data fusion techniques are being used
increasingly to merge data collected by different techniques to further expand areal coverage. Future sensing techniques will
begin to address 3D characterization of sedimentsin shallow coastal areas.
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